Autoactivity of A5 neurons: role of subthreshold oscillations and persistent Na+current.

نویسندگان

  • Donghai Huangfu
  • Patrice G Guyenet
چکیده

A5 noradrenergic neurons play a key role in autonomic regulation, nociception, and respiration. The purpose of the present experiments was to characterize some of the intrinsic properties of A5 cells in vitro. Whole cell recordings were obtained from 85 spinally projecting neurons of the ventrolateral pons of neonate rats. Immunohistochemistry showed that 60% of the ventrolateral pontine cells were noradrenergic. Eighty percent of A5 neurons were spontaneously active (0.1-5.5 spikes/s). Their discharge rate was unchanged by a mixture of synaptic blockers that eliminated postsynaptic potentials (PSPs). The nonnoradrenergic cells could not be distinguished from A5 cells on the basis of discharge rate, action potential duration, inward rectification, input resistance, or accommodation. A5 cells displayed subthreshold irregular oscillations of the membrane potential (main frequency component 0.5-2 Hz). These oscillations were unchanged in the presence of low external Ca2+-high Mg2+ and were very reduced by hyperpolarizing the cells below -65 mV. The oscillations were partially attenuated by 1 μM tetrodotoxin (TTX) and were eliminated by reducing external Na+ (27 mM). Stepping the membrane potential from -65 to -50 mV for 200 ms revealed the presence of a transient and a persistent inward current that were both blocked by 0.1 μM TTX or by extracellular Na+ reduction. In conclusion, most A5 neurons are spontaneously active in vitro. They display irregular subthreshold membrane potential oscillations generated by voltage-activated conductances that include a persistent TTX-sensitive Na+ current. Most of the activity of A5 cells appears due to intrinsic properties rather than to synaptic inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autoactivity of A5 neurons: role of subthreshold oscillations and persistent Na1 current

Huangfu, Donghai, and Patrice G. Guyenet. Autoactivity of A5 neurons: role of subthreshold oscillations and persistent Na1 current. Am. J. Physiol. 273 (Heart Circ. Physiol. 42): H2280–H2289, 1997.—A5 noradrenergic neurons play a key role in autonomic regulation, nociception, and respiration. The purpose of the present experiments was to characterize some of the intrinsic properties of A5 cells...

متن کامل

Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons.

Various subsets of brain neurons express a hyperpolarization-activated inward current (I(h)) that has been shown to be instrumental in pacing oscillatory activity at both a single-cell and a network level. A characteristic feature of the stellate cells (SCs) of entorhinal cortex (EC) layer II, those neurons giving rise to the main component of the perforant path input to the hippocampal formati...

متن کامل

Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex.

Neurons of the superficial medial entorhinal cortex (MEC), which deliver neocortical input to the hippocampus, exhibit intrinsic, subthreshold oscillations with slow dynamics. These intrinsic oscillations, driven by a persistent Na+ current and a slow outward current, may help to generate the theta rhythm, a slow rhythm that plays an important role in spatial and declarative learning. Here we s...

متن کامل

Lidocaine suppresses subthreshold oscillations by inhibiting persistent Na(+) current in injured dorsal root ganglion neurons.

The aim of this study was to determine the effect and mechanism of low concentration of lidocaine on subthreshold membrane potential oscillations (SMPO) and burst discharges in chronically compressed dorsal root ganglion (DRG) neurons. DRG neurons were isolated by enzymatic dissociation method. SMPO, burst discharges and single spike were elicited by whole cell patch-clamp technique in current ...

متن کامل

Sodium currents in mesencephalic trigeminal neurons from Nav1.6 null mice.

Previous studies using pharmacological methods suggest that subthreshold sodium currents are critical for rhythmical burst generation in mesencephalic trigeminal neurons (Mes V). In this study, we characterized transient (I(NaT)), persistent (I(N)(aP)), and resurgent (I(res)) sodium currents in Na(v)1.6-null mice (med mouse, Na(v)1.6(-/-)) lacking expression of the sodium channel gene Scn8a. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 273 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1997